

AIAA Plug-n-Play Mission Operations Workshop

Track 1-Approaches
Communication Architectures

By Kevin Lynaugh May 16-17 2011

Overview

- Vulcan Wireless Background
- •Communications Trade Space
- Small Satellite Solutions
- •Hypersonic Flight Experiment

Overview

- Vulcan Wireless Background
- •Communications Trade Space
- Small Satellite Solutions
- •Hypersonic Flight Experiment

Company Background

- Located in Carlsbad California
- Formed in 1993, Incorporated in 1999
- Leverage COTS technology to Military Applications
- Digital Communications and Sensors
- Active SBIR Phase 1 and 2 Projects in SDR and Encryption Technology
- Focusing on Small Satellite Applications

Overview

- Vulcan Wireless Background
- •Communications Trade Space
- Small Satellite Solutions
- •Hypersonic Flight Experiment

Communications Trade Space

- Requirements Drive Solutions
- High Level User Inputs
 - Data Rate
 - BER
 - Latency (Delay)
 - Availability
 - Vehicle Dynamics
 - Channel Characteristics
- One Communications Solution Does Not Fit All

CubeSat TT&C

- Low Data Rate
- •Low BER
- Long Latency
- Low Availability
- LEO Vehicle

Sensor Telemetry

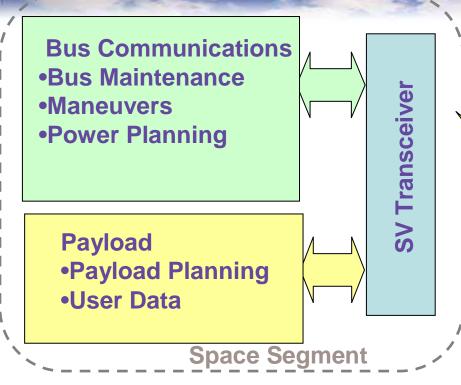
- High Data Rate
- •Low BER
- Low Latency
- High Availability
- MEO Vehicle

Radar Sensor

- High Data Rate
- •Low BER
- Low Latency
- High Availability
- •LEO Vehicle

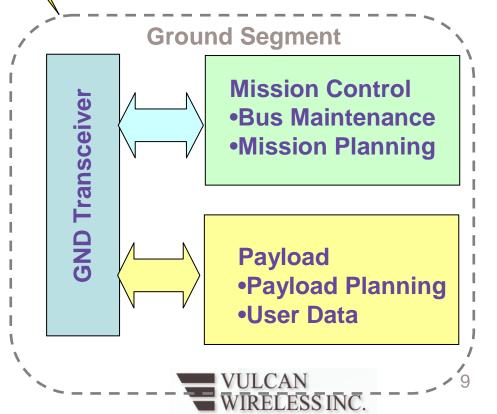
Multi Tier Market

- University/Research Market
 - Labor is free
 - Materials budget drives program
 - Requirements are driven from this perspective
- Commercial Market
 - Labor is largest cost
 - Materials are basically free
 - Requirements are driven by \$/bit and profit margin
- DoD Market
 - Labor cost are large
 - Hardware costs are significant
 - Requirements are driven by Lives/bit
- Its all about perspective

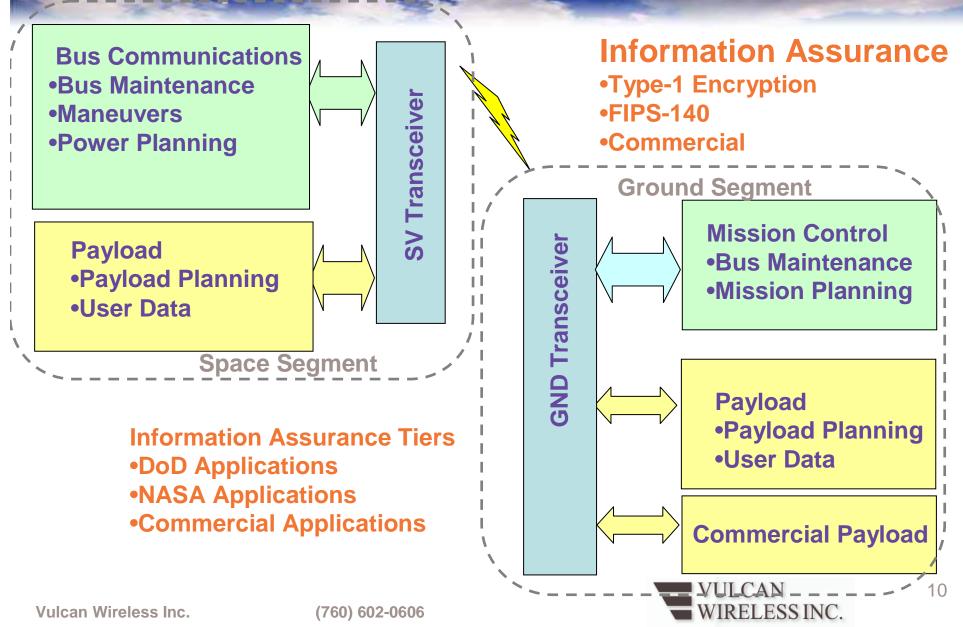


General Architectures

- High Availability (LEO/GEO, LEO/LEO)
- Low Latency (LEO/GND, LEO/LEO)
- Low Data Rate (LEO/GND, LEO/GEO)
- Medium Data Rate
- High Data Rate (LEO/GND, LEO/GEO)
- Low Cost (LEO/GND)



Space Communications



Provide Integrated Services

Automate Vehicle Data Services •IP Centric Architecture

Space Communications

Space Communications

SV Transceiver

Bus Communications

•Bus Maintenance

•Maneuvers

•Power Planning

Payload

- Payload Planning
- User Data

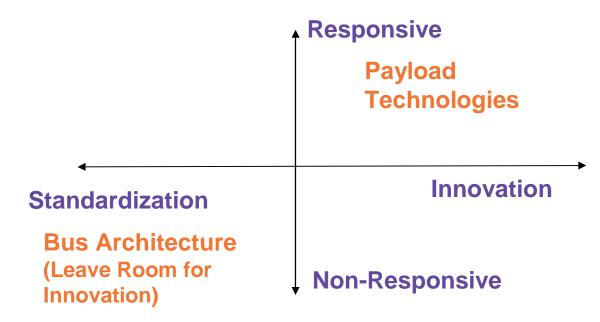
Space Segment

Innovation Drives
Contents of the Box
(Commercial PC Paradigm)

Helps drive down costs but does not stop innovation

Reduces Reoccurring CostsAllows Solutions to be

Standardize Interfaces


Reused in Each Tier

Ground Segment Mission Control Transceiver Bus Maintenance Mission Planning GND **Payload** Payload Planning User Data **Commercial Payload** WIRELESS INC.

Vulcan Wireless Inc.

(760) 602-0606

Innovation Vs Standardization

- Plug-and-Play SPA Architecture
 - SSM (Remote Procedure Call Mechanism)
 - ASIM (Communications Interface Device)
 - XTEDS (Electronic Data Sheets)
 - Goal to Commoditize Hardware Interfaces

CubeSat Clusters

- Spectrum Management
- Spectrum Sharing
- Spectral Reuse

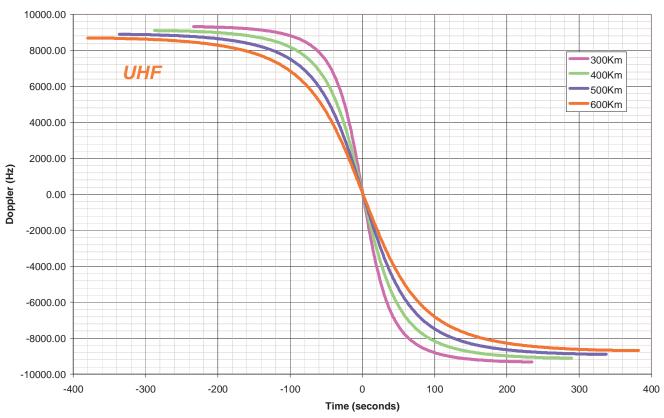
Overview

- Vulcan Wireless Background
- •Communications Trade Space
- Small Satellite Solutions
- •Hypersonic Flight Experiment

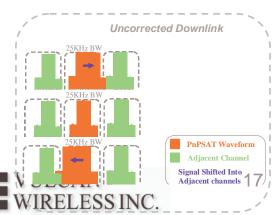
Small Satellite Communications Challenges

Solutions

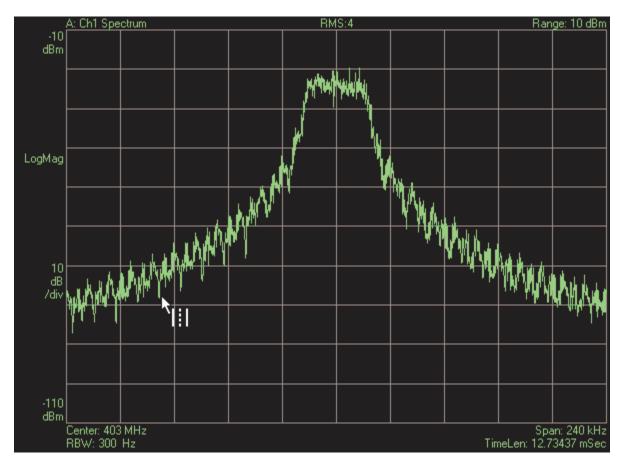
- Low Power Footprint Low Power Signal Processing
- Small Physical Footprint CubeSat Form Factor
- Frequency Bands UHF/L/S/X-Band
- Waveforms Programmable Waveforms
- Ground System Compatibility Multiple Protocols
- Legacy Compatibility Variable Waveforms and Protocols
- High Doppler Offsets and Rates On Orbit Doppler Correction


LEO SDR Challenges

- Doppler Offsets: Rapid Carrier Estimation
- Rapid Waveform Acquisition: Enables Packet Switchable Waveforms
- Flexible Waveform Demodulation
- Flexible Forward Error Correction
- Mitigates Fading Channels
- Programmable AGC Dynamics
- Programmable Data Rates


Doppler Frequencies Vs SV Altitude

Carrier Doppler (Hz) GND Terminal In View (Odeg Elevation) Vs Pass



Carrier Doppler [Direct Overhead Pass]

Transmit Waveform Example Spectrums

CSR-SDR

Multi-H CPM (12/13) 19.2Kbps (Mode 137)

Hardware Solutions

- MBT-R2 and PnPSAT
- CSR-SDR (UHF/S-Band)
- USB-SDR (USB S-Band)
- DBT-SDR (S-Band SEW)
- LPR-SDR (Low Power S-Band)

MBT-R2 PnPSAT

MBT-R2 Tactical SDR

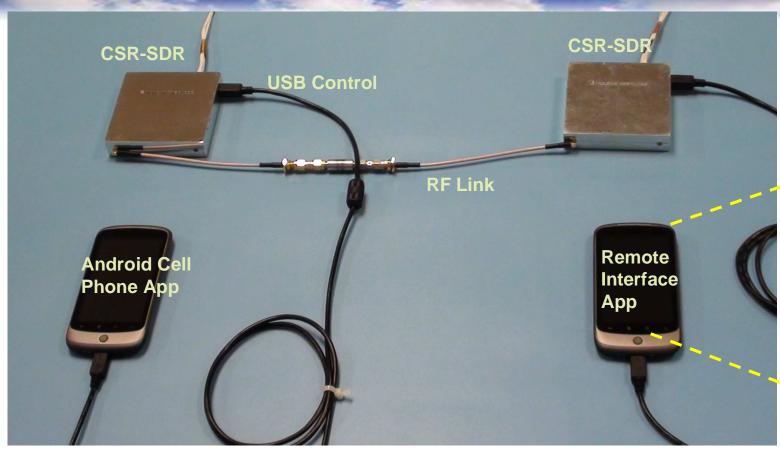
PnPSAT UHF Flight Antenna

GTX117 Ground Terminal

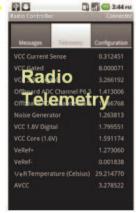
- Developed for PnPSAT
- UHF Tx/Rx Half Duplex
- Software Defined Radio Flexibility
 - TT&C
 - Direct to War Fighter
- Integrated 28V Power Supplies
- Provided Turn Key Data Link with:
 - SDR (Tested to TRL-6)
 - Flight Antenna
 - Tracking Ground Terminal (Kwaj)

Tactical UHF Communications Payload Flight Hardware

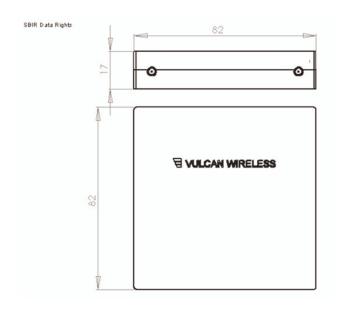
CSR-SDR



- UHF Tx/Rx Half Duplex
- CubeSat Form Factor
- Software Defined Radio Flexibility
 - TT&C
 - Direct to War Fighter
- Integrated Power Supplies
- Multiple Interfaces (SPA-1, SPA-U, R\$-232, RS-488)
- Flight Tested (TRL-7)
- - TDRS-MA
 - High Speed Telemetry


CSR-SDR Android Demo

- Demonstrated UHF Bidirectional Communications with two CSR-SDRs
- Remotely Controlled with App on Android Cell Phones



USB-SDR General Specs

- RF Transmit Power 2Watts
- >100Kbps Uplink (USB/STDN)
- >6Mbps Downlink
- Full Duplex

TDRS-MA Transponder

CubeSat Communications Payload

- No Ground Terminal Required
- Constant Communications Link to Space Vehicle any where on orbit
- Utilized exiting NASA infrastructure
- •TRL-7/Scheduled to Fly 2011
- PnP SPA-U Interface

TDRS-MA (LEO/GEO)

- Low Data Rate
- Medium BER
- Low Latency
- High Availability
- LEO and MEO Vehicles

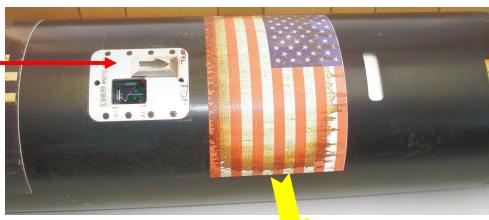
Overview

- Vulcan Wireless Background
- •Communications Trade Space
- Small Satellite Solutions
- •Hypersonic Flight Experiment

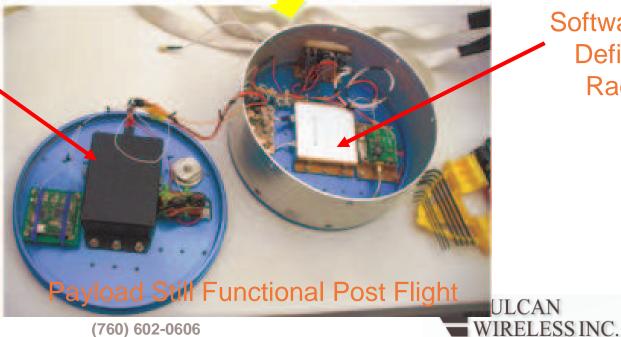
Sounding Rocket Experiment

Objective of Experiment

- Host on Hypersonic Flight Vehicle
- Demonstrate Space Vehicle Black Box Transponder Capability
- Close Link to GEO TDRS-MA
- Provided Real-Time Payload Telemetry to Ground



Successful Launch and Demonstration of CSR-SDR-S Payload on May 4th 2010 at 6:45am



SR-SDR Flown on Sounding Rocket

Flight Battery

CSR-SDR

Software Defined Radio

Conclusion

Questions